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The Power of Images

Earth as viewed from the Moon during the Apollo 8 

mission, Christmas Eve, 1968





Paris~1838: Louis-Jacques-Mandé Daguerre



After 1940~ 1940





Changing Colors
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� Global changes � limited

Changing Colors is Difficult

� Local changes � tend to create unrealistic artifacts



Changing Colors is Tedious



Change to What Color?



Our Approach



� Each Pixel can be seen as a 3D 

point in RGB space:

Representing Color

White

Cyan

Blue

Red

Green

Black

Yellow

Magenta

A 3D histogram of color values



Part 1: Parametric Modeling of the 

Image Colors

� More natural color spaces: HSV, Lab

� We use the 2D color channels and fit a 

Gaussian Mixture Model to the pixel colors 
histogram in these spaces



Association of Pixels

� Each pixel in the image is associated with a 
probability vector of matching each Gaussian
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Key Idea
Changes in Model Parameters 

Leads to a Change in the Image 



Model Parametric Changes

One Gaussian

Gaussian Mixture Model, K=3

Translation Rotation Scaling



New Pixel Color

� After transformation, the Guassian has 

a new mean and covariance matrix 

� A pixel color x is transformed by the operations 

on Guassian i as follows:
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� The new pixel color is given by the weighted 

average of all new colors created by all 
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Synthesizing New Image: 

Simple Example

One Gaussian

Translation Rotation Scaling



Combining Complex Transformation

Complex Transformation

Gaussian Mixture Model, K=3



� Once we have a way to synthesize new images 

based on changing a parametric model we can 

build a simple algorithm:

Part II: 

Navigation in Appearance Space

10 Sample parametric space10 Sample parametric space

20 Synthesize images

30 Display to user

40 Accept user feedback

50 Goto 10



� How to display the image results?

� How to let the user interact with them?

User Interface Challenges



Map from High Dimension to 2D

Sample Space MDS Grid layout

Affinity



Spatial Considerations

� Complex colors may cause spatial artifacts

� To reduce these, we use a natural edge map and apply a median-filter on 
each pixel’s probability vector









� Defining image regions to extract the head by 

defining the characteristic color of face (skin 

colors), hair (hair colors) and background.

Other Use of Parametric Color Model



� Mapping the extracted face skin color to all skin 

regions:

Synthesize to Change Skin Color



Identity Transfer



Identity Transfer



Image Composition



Shape Retargeting



Which is Fake?



Which is Fake?



Changing Size







CropScaleContent

Aware



Our Approach



A Seam



Seam Carving



A Local Operator!

Width is 

one pixel smaller



Finding the Seam?



The Optimal Seam
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How Many Possible Seams?

� An image has n columns and m rows

� Start from any pixel at top row (n)

� For each one choose between 3 possible pixels 

in the next rowin the next row

� For each one of those, choose between 3 in the 

next rowD

� n*3m-1 = exponential! �



Pixel Attribute �

Dynamic Programming
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Dynamic Programming 
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Dynamic Programming 

5 8 12 3

M(i, j) = e(i, j) + min(M(i–1, j–1), M(i–1, j), M(i – 1, j+1))
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Dynamic Programming 

5 8 12 3

M(i, j) = e(i, j) + min(M(i–1, j–1), M(i–1, j), M(i – 1, j+1))
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Searching for Minimum
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Backtracking the Seam 
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Backtracking the Seam
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Backtracking the Seam
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M(i, j) = e(i, j) + min(M(i–1, j–1), M(i–1, j), M(i – 1, j+1))

9 7 6 12

14 9 10 8

14 13 15 16



The Cost Matrix & Seam

Low 

cost

High 

cost



Inserting a Seam?

Duplicate



Width is 

one pixel larger



Duplicate Seams in Order



Duplicate Seams in Order



Enlarged or Reduced?



Not Always a Success



Image: Yehudit Garinkol





Find the Missing Shoe!



Solution



Video As Well



Fabricating an Whole Image









Find, 

+ + +



Find, Cut & Paste

+ + + =



Challenges

� Image search

� Image comparison

� Image segmentation

Image composition� Image composition

All Very difficult problems in general!

� Key idea: 

Make the problems simpler by using 

simple images! 

� Extensive filtering



Find?

Where do you find anything today?







Filtering Query:

Initial ResultsSaliency FilteringShape Filtering



Filtering

� Small total number but large ratio of 

“good images” (around 80%-90%)

� Extensive filtering work only because 

we have a large enough set!the Internet



Source Image

Composition

Target Image



Takes TimeD

AndD



Not Always a Success



More Results



More Results



More Results



Do images convey reality?



http://photojournal.jpl.nasa.gov/catalog/pia00254

Maat Mons on Venus

Vertical exaggeration of 22.5 times





More information:

http://www.faculty.idc.ac.il/arik/


